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ABSTRACT

The observed magnetic field on the solar surface is characterized by a very complex spatial and temporal behavior.
Although feature-tracking algorithms have allowed us to deepen our understanding of this behavior, subjectivity
plays an important role in the identification and tracking of such features. In this paper, we study the temporal
stochasticity of the magnetic field on the solar surface without relying on either the concept of magnetic feature or
on the subjective assumptions about their identification and interaction. The analysis is applied to observations of
the magnetic field of the quiet solar photosphere carried out with the Imaging Magnetograph eXperiment (IMaX)
instrument on board the stratospheric balloon, SUNRISE. We show that the joint probability distribution functions of
the longitudinal (B)) and transverse (B,) components of the magnetic field, as well as of the magnetic pressure

(B2 = B* + BH2)’ verify the necessary and sufficient condition for the Markov chains. Therefore, we establish that
the magnetic field as seen by IMaX with a resolution of 07 15-0”18 and 33 s cadence, which can be considered as a

memoryless temporal fluctuating quantity.
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1. INTRODUCTION

The observed photospheric magnetic field appears as
distributed concentrations over the entire solar surface. These
concentrations are characterized by a variety of magnetic
features (i.e., elements) that span a huge range of spatial scales,
from active regions to small-scale mixed-polarity features of
the quiet Sun network and internetwork (Stenflo 2013). In the
quiet Sun (hereafter referred to as QS), the aforementioned
elements possess magnetic fluxes of the order of 10'*-10" Mx
(Schrijver et al. 1997; Parnell 2001; Solanki et al. 2006). These
elements also show rich and complex dynamics in both time
and space, and interact with each other in a variety of ways as a
consequence of the constant motions of the underlying flow
patterns (i.e., convective motions). The characterization of the
elements is of crucial importance for many research topics
within solar physics, such as understanding the coupling
between the different solar atmospheric layers (Hagenaar
et al. 2012; Uritsky et al. 2013), the relation between the
magnetic flux budget and coronal heating (Longcope &
Kankelborg 1999), extrapolations toward the solar corona
(Wiegelmann et al. 2013), inferring semi-empirical magneto-
hydrostatic models of the corona (Wiegelmann et al. 2015) and
solar wind (Arge & Pizzo 2000; Cohen et al. 2007), etc.

The evolution of the QS magnetic features is studied in terms
of flux emergence, cancellation, coalescence, and fragmenta-
tion that give a certain intermittent distribution of fluxes over
the solar surface. The statistics of the flux distribution is
described by the so-called magnetochemistry (Schrijver
et al. 1997). Methodologically, the magnetochemistry is based
on the identification and tracking of particular features
(DeForest et al. 2007; Lamb et al. 2008, 2010, 2013; lida
et al. 2012). A prominent progress in our understanding of the
solar surface magnetism has been achieved by methods based
on feature tracking (e.g., Thornton & Parnell 2011; and
references therein). However, a comparison of the different
feature-tracking algorithms (DeForest et al. 2007), shows that
the characterization of the features is strongly affected by the

choice of the algorithm and the assumptions they make (see
also Parnell et al. 2009).

A key concern voiced by Lamb et al. (2013) was that the
“measurement of the behavior of small magnetic features on
the photosphere is limited, partly by the spatial and temporal
resolution of the observing instruments, and partly by the
difficulty of following visual features that do not behave
exactly like discrete physical objects” and that “experience has
shown (DeForest et al. 2007) that even automated methods of
solar feature tracking, produced by different authors with the
intention of reproducing others’ results, have myriad built-in
assumptions and subjectivity of their own unless great care is
taken in specifying the algorithm exactly.”

Motivated by these concerns, in this work we try to obtain
observationally useful and physically meaningful information
about the nature of the magnetic flux concentrations in the QS,
without subjective assumptions about the interaction and
identification of the such features. In particular, we show that
the time-sequence of the magnetic flux density across surfaces
with normal vectors perpendicular to the line of sight (LOS)
(referred to as Bj) and normal vector parallel to the LOS
(referred to as By), as well as the magnetic pressure
(B = B? + BHZ) at a given position on the quiet solar surface
verify the properties of a Markov chain. To demonstrate
this, we employ observations of the solar magnetic field on
the quiet photosphere taken by the Sunrise/IMaX instrument
(Section 2) and study specific relations for the joint probability
and conditional probability density functions (Section 3)
for the three aforementioned time-varying quantities: B, B_
and B%. The implications of our findings will be discussed in
Section 4.

2. OBSERVATIONAL DATA AND INFERENCE OF
PHYSICAL PARAMETERS

The QS data employed in this work was recorded with the
1 m stratospheric balloon-borne solar observatory SUNRISE
(Solanki et al. 2010; Barthol et al. 2011) with the onboard
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instrument Imaging Magnetograph eXperiment (IMaX, Marti-
nez Pillet et al. 2011). The data were observed near the solar
disk center on 2009 June 9.

An average flight altitude of 35 km reduces more than 95%
of the disturbances introduced by Earth’s atmosphere; image
motions due to wind were stabilized by the Correlation-Tracker
and Wavefront Sensor (Berkefeld et al. 2011). IMaX spectro-
polarimetric data yielded a spatial resolution of 0725 and a field
of view (FOV) of 50” x 50”. Further image reconstruction
based on phase diversity calibration of the point-spread
function of the optical system improved the resolution to
0”15-0718.

The IMaX magnetograph uses a LiNbO; etalon operating in
double pass, liquid crystal variable retarders as the polarization
modulator, and a beam splitter as the polarization analyzer. We
use data recorded in the so-called V5-6 observing mode (see
Martinez Pillet et al. 2011). Images of the Stokes vector
parameters S = (I, Q, U, V) were taken at five wavelengths
(£80, +40 mA from line center plus continuum at 4227 mf‘:)
along the profile of the spectral line Fer located at 5250.2 A.
With an effective Landé factor of g = 3, this spectral line is
highly sensitive to the magnetic field.

The reduction procedure renders time series of S(\) with a
cadence of At = 33 s; a spatial sampling of 07055 per pixel,
and an effective FOV of 45" x 45". The total number of
available images is 7 = 113, yielding a total observing time of
62 minutes.

From here, we infer the longitudinal B| and transverse B,
magnetic field flux density at each pixel on the detector using
an inversion method based on the radiative transfer equation
for the Stokes parameters by means the VFISV code Borrero
et al. (2011), which assumes that the physical parameters
of the atmosphere model (except for the source function) are
constant along the vertical direction in the solar atmosphere
within the range of optical depths where this spectral
line is formed (i.e., the Milne—Eddington approximation).
Following Graham et al. (2002), we refer to B and B, as the
magnetic flux density through surfaces whose normal vectors
are oriented parallel and perpendicularly, respectively, to
the LOS.

The signal-to-noise ratio of the observations is affected by
the Poisson photon noise of the instrument, the accuracy of the
polarimetric calibration, and the quantum efficiency of the
detectors. Following Borrero & Kobel (2011), we estimated a
standard deviation of components, o)~ 8 Mx cm 2 and
o, ~ 55Mx cm 2, as a measure of our accuracy in determining
the magnetic field density components.

Figure 1 shows a snapshot of the solar surface (i.e., quiet
Sun granulation) as seen by IMaX. We also overplot the
retrieved values of Bj (bottom panel) and B, (top panel, but
only in those pixels where the inferred values are about three
times above the standard deviation: |Bj| 2 25 Mx cm~2 and
B > 175Mxcm 2.

3. DATA ANALYSIS

In this section, we present a brief theoretical overview on
Markov random variables (Section 3.1) and demonstrate how
the Markov property was analyzed and confirmed in our
observational data (see Section 3.2).
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Figure 1. Snapshot of the solar surface (i.e., granulation) as seen by IMaX.
Grayscale corresponds to the normalized continuum intensity. Colors correspond
to B and B, on the bottom and top panels, respectively. Only those pixels where
the magnetic flux is at least three times the standard deviation are plotted.

3.1. Markov Property: Theory

Consider a time-discrete stochastic process b(f), where the
random variable b is defined over a finite set of discrete states
(state space). The state space has M distinct elements.

Let p, (b, ty;...;b1, 1) = p, (b, ... b)) be the n-joint prob-
ability distribution function (pdf), such that p, (b, ... b))d"b is
the probability that b has values in the interval [by, b + db) at
time f;, ... and in the range [b,, b, + db) at time instance t,,.
For brevity, the intervals are labeled by the representative
states; that is to say that the process b(¢) is in the state b,,, at time
t,, if the random variable b has values in [b,,, b,, + db) at time
t,,- Empirically, db is the fixed binsize that has been introduced
for the estimation of the probabilities and is henceforth
neglected in the equations for simplicity. Some trivial proper-
ties of the probabilities are 0 < p((b)db <1 and
S p(b)db = 1 with p,(b) = p(b).

The conditional pdf, w,(b,|b,_1 -.. by), is defined such that
w, is the probability for b() to be in state b, at time ¢, if the
random variable b already passed through the states b, | ... b;
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at later times [#,_1, ], which we call a history of the process
‘H = b,_1 ... by. By definition:

Wa (bl H) = p,, (bu ... b1)/p,_ (H). 1)

A time- and space-discrete stochastic process b(?) is a called
Markov chain (e.g., Oppenheim et al. 1977) if the history of the
process H can be reduced to a single state, which is assigned to
be immediately preceding the current one:

W (bu|H) = w (bn|bn—1). @)

It is worth mentioning that p,_; and p, are functions of
n — 1 and n independent variables respectively. Therefore,
they are represented by M"~! and M" state configurations.
Due to the moderate size of the data set, we set n = 3 in
Equation (1) (see also Friedrich & Peinke 1997; Friedrich
et al. 2011) and obtain the following equation describing the
first condition of the Markov property:

D3 (b3, by, by) = w (b3|ba)p, (b2, by). 3)

The second condition we examine is based on the integral
form of the Chapman—Kolmogorov equation (e.g., van
Kampen 1992), which reflects the time ordering of the chain:

M
w (bslb1) = Y w (b3|by)w (ba|by), “4)
by

where each w is a M? transition matrix. On their own,
Equations (3) and (4) are necessary conditions for a stochastic
process to have the Markov property, while together they
represent also a sufficient condition (see Fulifiski et al. 1998,
and references therein). Therefore, in the following, these two
conditions are used simultaneously to test for the Markov
property of the observed fluctuations in Bj, B, and B (see
Equation (5)).

3.2. Markov Property: Test

It has been shown by Asensio Ramos (2009) that spatial
increment h,(x,y) =B (x+r,y+r) — B (x,y) does not
show Markov properties, where B, (x, y) is the LOS magnetic
flux density (see Section 2) registered at pixel (x, y) and
B (x + r,y + r) is the same quantity but separated by the
distance (spatial scale) r. In this paper we perform a similar
Markov analysis to the aforementioned work, but in the time
domain and for the observables themselves, not their incre-
ments. We examine Markov properties of transitions/fluctua-
tion of the observable b in time (from image to image) at a
given pixel:

b — tszt - bﬁzm o ®)
where At is the cadence time (see Section 2), and b* is one of
three variables (B, By, B?) inferred at image pixel (x, y). A
relation between observable image pixel(s) and cadence time is
schematically shown in Figure 2.

The Markov property is tested by comparing the indepen-
dently estimated left- and right-hand sides of Equations (3) and
(4) (see the scheme in Figure 3). That is, we count the number
of occurrences of the pairs (single transitions) for
P2 (b7 A b)) and w (b ,1b6”) and triplets (double transi-
tions) for p; (b7, A, b5 a,» ) according to Equation (5). In
Figure 3, the red blocks designate estimated functions shown
with red lines in Figure 4. The dotted blocks in Figure 3
correspond to the circles in Figure 4.
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Figure 2. Geometry (schematic, not to scale) of the analyzed fluctuations.
Image pixels (the red square) define a spatial uniform grid at whose nodes we
register occurrences (above the noise level) of the observable 5" in time (see
Equation (5)). The sequences (chains) at each spatial pixel have finite lengths
due to the interruption by noise and apparent motion of the magnetic
concentrations. For the Markov property test, all chains we part into time-
ordered pairs and triplets of the random samples (see Equations (3), (4) and
Figure 3). All pixels are considered to be spatially independent contributors
across the entire field of view to the single set of the registered chains.

A: Eq.(3)

p3 (b3, by, by)

B: Eq.(4)

D wlbs by)w(bylby)
b

Figure 3. Schematic representation of the necessary and sufficient conditions
for the Markov property: chart A corresponds to Equation (3) and chart B
corresponds to Equation (4). Algebraic relations in Equations (3) and (4)
between statistical quantities are verified by a comparison of the independently
estimated right-hand side (dotted blocks) and the corresponding left-hand side
(solid line blocks) of each equation (see the text for rigorous definitions and
Figure 4 for the results). A statistic is collected from a set of time-ordered
(arrows) pairs and triplets of the random realizations {bj, b,, b3} (see
Equation (5) and Section 3.2), which in turn are acquired as shown in Figure 2.
Lines connecting formulae blocks and b, 3-values show dependence of the
functions on their arguments. The red blocks designate estimated functions
shown with red lines in Figure 4, and dotted blocks correspond to the circles in
Figure 4.
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A: Eq.(3),(6)
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Figure 4. The results of the Markov property test. The vertical arrangement of panels corresponds to three analyzed observables. Top row A: test of the relation given
by Equation (6). Bottom row B: test of the relation given by Equation (7). The abscissa axes are shown in normalized values (dimensionless). The observables Bxxx
are linearly normalized into continuum interval b € [0, 1] according to b = (Bxxx — Bmin)/(Bmax — Bmin), Where the global extreme values By, and B, are
estimated during the pixel selection procedure (for double transitions) over all T images. For Bj;, the empty noise cut-off range [—30j, 30} is removed during the

normalization procedure.

To determine the statistics of the transitions described by
Equation (5) we analyze only those pixels where the signal is
above the 30-noise cut-off simultaneously at # and ¢ + At at the
same spatial location (x, y). This is done for all conditional
probability functions w and the two-joint probability function
p, (b2, by) in Equations (3) and (4). Likewise, for the three-
joint probability function p;(bs3, by, by) in Equation (3), the
condition is that the signal must be above the 30 cut-off in
three images at t, ¢t + A¢, and ¢t + 2Atz. Such a pixel-wise
analysis of images makes the notion of extended magnetic
feature to be irrelevant, as well as their tracking.

The explicit computation of Equation (3) reveals that the
range of values in which p; is defined, given by the
MB3-dimensional space of independent samples, is quite
sparse.’ Thus, to improve its statistical significance, we select

The particular value of M depends on the binsize Mdb = 1, whose optimal
value is computed as in Knuth (2006). With this, we obtain
Mp, = 432, Mp, = 295, and M2 = 455.

those triples that have maximal occurrence in the M?3-space
and those with occurrence value of at least 90% of the maximal
one. We refer to the set of statistically reliable points
as (b1, by, b)).

The test of the Markov property is split into two steps. First,
we transform p;, p and w into M-dimensional vectors by
fixing the variables b5 and b, to each of those points selected as
statistically reliable: b3 = b4 and b; = b/

P3(b3, by, b)) = p3(b2)p) p15 W (bslby) = w (D) lp;
P2 (b2, by) = py (b2) /5 w(bslbr) = w(b3) |,
w(b2|b1) = w(b2) |,/

such that they transform Equation (3) into an identity with
respect to the free variable b;:

P30 |b6; = w(b2)|n;py (D) |,/ (6)
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and Equation (4) into M-vector function of the free variable bs.

w(b3)ly = Do w(bslb)w (b)) )
by

To further increase the statistics, a second step in our test of
the Markov property consists in averaging the left- and right-
hand sides of Equations (6) and (7) for all primed points that
were previously selected.

The results of the described procedure are shown in Figure 4.
The top row panels in Figure 4 show the estimated relation
corresponding to Equation (6) and bottom panels to
Equation (7). The circles represent the estimated left-hand
sides of both equations, while the solid lines correspond to the
right-hand sides. From these figures it can be concluded that
around the global and a few of local maxima of the M?3-space,
the Markov property is clearly satisfied.

4. CONCLUSIONS

Stochastic Markov processes are intermediate processes that
lie between pure randomness of the independent events and
those processes with a strong dependence on the past states
(i.e., history) (e.g., Oppenheim et al. 1977).

Our analysis establishes that the magnetic field temporal
fluctuations, as seen by IMaX with a resolution of 0”15-0"18
and 33 s cadence, can be considered as a Markov discrete
stochastic process (Markov chain). The sufficient and necessary
conditions for the Markov processes have been verified for the
case of the maxima (global and local) of the available statistics.

The revealed Markov property in the temporal dynamics of
the turbulent small-scale magnetic field is that the quiet Sun can
be used to constraint magneto-hydrodynamics models of the
solar atmosphere and a stellar turbulent dynamo, in general.
That is to say the Markov property should be reproducible in
the relevant simulations of the photospheric magnetic fields.

In this work we hope we brought forward new ideas and
techniques for the analysis of solar spectropolarimetric data.
We foresee a number of future applications of the method
described in this paper. For instance, in a future work we plan
to investigate the so-called Markov-Einstein timescale. This
timescale is the minimum time interval over which the
stochastic data can be considered as a Markov process. On
shorter timescales, one expects to find correlations, and thus
memory effects start to play a significant role in transition
probabilities (Friedrich et al. 2011, and references therein). The
cadence At in our data seems to be greater than (or just equal
to) the Markov—Einstein timescale for the spatial resolution of
our observations. To have an exact relation between temporal/
spatial resolution and Markov property, one needs to perform a
systematic analysis of similar observations with different
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resolutions and cadences. This will be the subject of a future
investigation.
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