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A black hole x-ray binary (XRB) system forms when gas is stripped from a normal star and accretes onto a
black hole, which heats the gas sufficiently to emit x-rays. We report a polarimetric observation of the XRB
Cygnus X-1 using the Imaging X-ray Polarimetry Explorer. The electric field position angle aligns with the
outflowing jet, indicating that the jet is launched from the inner x-ray–emitting region. The polarization degree
is 4.01 ± 0.20% at 2 to 8 kiloelectronvolts, implying that the accretion disk is viewed closer to edge-on than
the binary orbit. These observations reveal that hot x-ray–emitting plasma is spatially extended in a plane
perpendicular to, not parallel to, the jet axis.

C
ygnus X-1 (Cyg X-1, also cataloged as HD
226868) is a bright and persistent x-ray
source. It is a binary system containing
a 21.2 ± 2.2 solar-mass black hole in a
5.6-day orbit with a 40:6þ7:7

�7:1 solar-mass
star and is located at a distance of 2:22þ0:18

�0:17
kiloparsecs (kpc) (1). Gas is stripped from the
companion star; as it falls in the strong grav-
itational field of the black hole, it forms an
accretion disk that is heated to millions of
kelvin. The hot incandescent gas emits x-rays.
Previous analyses of the thermal x-ray flux, its
energy spectrum, and the shape of the x-ray
emission lines have indicated that the black
hole in Cyg X-1 spins rapidly, with a dimen-
sionless spin parameter a > 0.92 (close to the
maximum possible value of 1) (2). Cyg X-1 also
produces two pencil-shaped outflows of mag-
netized plasma, called jets, that have been
imaged in the radio band (3). It is therefore
classified as amicroquasar, being analogous to
much larger radio-loud quasars (supermassive
black holes with jets).

Black hole x-ray binaries are observed in
states of x-ray emission thought to correspond
to different configurations of the accreting
matter (4). In the soft state, the x-rays are
dominated by thermal emission from the ac-
cretion disk. The thermal emission is expected
to be polarized because x-rays scatter off elec-
trons in the accretion disk (5–7). In the hard
state, the x-ray emission is produced by (single
or multiple) scattering of photons (emitted by
the accretion disk or electrons in themagnetic
field) off electrons in hot coronal gas. Observa-
tions constrain the corona to be much hotter
(kBTe ∼ 100 keV, where kB is the Boltzmann
constant and Te is the electron temperature)
than the accretion disk (kBTd ∼ 0.1 keV, where
Td is the disk temperature). The shape of the
corona and its location with respect to the
accretion disk are both debated (4, 8) but
could be constrained by x-ray polarimetry (9).
Reflection of x-rays emitted by the corona off
the accretion disk produces an emission com-
ponent that includes the ironKa fluorescence

line at ∼6.4 keV, which can constrain the ve-
locity of the accretion disk gas orbiting the
black hole and the time dilation close to the
black hole. This reflection component is also
expected to be polarized (10, 11).
We performed x-ray polarimetric observa-

tions of Cyg X-1 using the Imaging X-ray
Polarimetry Explorer (IXPE) space telescope
(12). Theoretical predictions of the Cyg X-1 po-
larization degree (in the 2–8 keV IXPE band)
were ∼1% or lower, depending on the emis-
sion state (6, 7, 9, 13). These predictions used
an inclination angle (the angle between the
black hole spin axis and the line of sight) of
i = 27.°5 ± 0.°8 inferred from optical observa-
tions of the binary system (1). Earlier polar-
ization observations with the Eighth Orbiting
Solar Observatory (OSO-8) space telescope
gave a polarization degree of 2.44 ± 1.07% and
a polarization angle (measured on the plane
of the sky from north to east) of −18° ± 13° at
2.6 keV (14, 15) and a nondetection at higher
energies (16). IXPE observed Cyg X-1 from
15 to 21 May 2022 with an exposure time of
∼242 kiloseconds (ks). The IXPE 2–8 keV ob-
servationswere coordinatedwith simultaneous
x-ray and gamma-ray observations by other
space telescopes covering the energy range
0.2–250 keV, including the Neutron Star Inte-
rior CompositionExplorer (NICER, 0.2–12 keV),
the Nuclear Spectroscopic Telescope Array
(NuSTAR, 3–79 keV), the Swift X-ray Telescope
(XRT, 0.2–10 keV), the Astronomical Roentgen
Telescope–X-rayConcentrator (ART-XC, 4–30keV)
of the Spectrum-Röntgen-Gamma observatory
(SRG), and the INTEGRAL Soft Gamma-Ray
Imager (ISGRI, 30–80 keV) on the Interna-
tional Gamma-Ray Astrophysics Laboratory
(INTEGRAL) (17). Simultaneous optical ob-
servations were performed with the Double
Image Polarimeter 2 (DIPol-2) instrument
mounted on the Tohoku 60-cm telescope
at the Haleakala Observatory, Hawaii, and
the Robotic Polarimeter (RoboPol) at the
1.3-m telescope of the Skinakas Observatory,
Greece (17).
During the observation campaign, Cyg X-1

was highly variable over the entire 0.2–250 keV
energy range (fig. S1). The source was in the
hard x-ray state with a photon index of 1.6
(table S5) and a 0.2–250 keV luminosity of
1.1% of the Eddington luminosity (the lumi-
nosity at which the radiation pressure on
electrons equals the gravitational pull on the
ions of the accreted material). We detected
linear polarization in the IXPE data with >20s
statistical confidence (where s is the stan-
dard deviation) (Fig. 1 and fig. S3), measur-
ing a 2–8 keV polarization degree of 4.01 ±
0.20% at an electric field position angle of
−20.°7 ± 1.°4. The polarization degree and
angle are consistent with the previous results
of OSO-8 at 2.6 keV (15). Evidence for an in-
crease in the polarization degree with energy
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(Fig. 1 and fig. S5) is significant at the 3.4s
level (17). We find a 2.4s indication that the
polarization degree increases with the source
flux (fig. S6).
We find no evidence that the polarization

depends on the orbital phase of the binary
system (fig. S7). This excludes the possibility
that the observed x-ray polarization originates
from the scattering of x-ray photons off the
companion star or its wind and shows that
these effects do not measurably affect the po-
larization properties.
We calculated a suite of emission models

and compared them with the observations
(17). We estimate that >90% of the x-rays
come from the inner ∼2000-km-diameter
region surrounding the ∼60-km-diameter
black hole. The x-ray polarization angle aligns
with the billion-kilometer-scale radio jet to
within ∼5° (Fig. 2).
We decomposed the broadband energy

spectra observed simultaneously with IXPE,
NICER, NuSTAR, and INTEGRAL into a multi-
temperature black-body component (thermal
emission from the accretion disk), a power-law
component (frommultiple Compton scatter-
ing events in the corona), emission reflected
off the accretion disk, and emission frommore
distant stationary plasma (fig. S8) (17).We find
that the coronal emission strongly dominates
in the IXPE energy band, contributing ∼90%
of the observed flux. The accretion disk and
reflected emission components contribute
<1% and ∼10% of the emission, respectively.
Therefore, our polarization measurements

are likely to be dominated by the coronal
emission.
We analyzed the optical data at multiple

wavelengths (17), finding an intrinsic optical
polarization degree of ∼1% and polarization
angle of −24°. The uncertainties on these re-
sults are dominated by systematic effects
related to the choice of polarization refer-
ence stars and are ±0.1% on the polarization
degree and ±13° on the polarization direc-
tion (figs. S11 to S13 and table S4). The optical
polarization direction is thought to indicate
the orientation of the orbital axis projected
onto the sky (18). We find that it aligns with
the x-ray polarization direction and the ra-
dio jet.
The alignment of the x-ray polarization with

the radio jet indicates that the inner x-ray–
emitting region is directly related to the radio
jet. If the x-ray polarization is perpendicular
to the inner accretion disk plane, as favored
in ourmodels (17), this implies that the inner
accretion disk is perpendicular to the radio
jet, at least on the plane of the sky. This is
consistent with the hypothesis that jets of
microquasars (and, by extension, of quasars)
are launched perpendicular to the inner ac-
cretion flow (19).
Figure 3 compares our observed polariza-

tion with theoretical predictions made using
models of the corona (17). We find that the
only models that are consistent with the ob-
servations are those in which the coronal
plasma is extended perpendicular to the jet
axis, and therefore probably parallel to the

accretion disk. In these models, repeated scat-
terings in the plane of the corona polarize the
x-rays perpendicular to that plane. Two mod-
els are consistent with our observations: (i) a
hot corona sandwiching the accretion disk
(20), as predicted by numerical accretion disk
simulations (21); or (ii) a composite accretion
flow with a truncated cold disk that is geomet-
rically thin and optically thick and an inner
laterally extended region (geometrically thick
but optically thin) of hot plasma, possibly pro-
duced by evaporation of the cold disk (22). If
the jet is launched from the inner, magne-
tized region of the disk, the jet carrying away
disk angular momentum could leave behind
a radially extended hot and optically thin
corona (23).
The polarization data rule out models in

which the corona is a narrow plasma column
or cone along the jet axis, or consists of two
compact regions above and below the black
hole. Our modeling of these scenarios accounts
for the effect of the coronal emission reflecting
off the accretion disk (17). Thesemodels predict
polarization degree well below the observed
values. Models that produce high polarization
degree predict polarization directions close
to perpendicular to the jet axis, a decreasing
polarization degree with energy, or both, and
therefore disagree with the observations.
In our favored corona models, the high po-

larization degreewe observe requires that the
x-ray bright region is seen at a higher incli-
nation than the ∼27° inclination of the binary
orbit. Sandwich corona models involving the
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Compton scattering of disk photons with ini-
tial energies of ∼0.1 keV require inclinations
exceeding 65°. Truncated disk models invoking
Compton scattering of the disk or internally
generated lower-energy (∼1–10 eV) synchro-
tron photons (24) can reproduce the observed
polarization degree for inclinations of >45°. In
comparison to the models with disk photons,
the larger number of scatterings required to
energize lower-energy synchrotron photons
to kiloelectronvolt energies results in higher
polarization degree in the IXPE energy band
(fig. S9) (17).
Although the x-ray polarization, optical po-

larization, and radio jet approximately align
in the plane of the sky, the inclination of the
x-ray bright region exceeds that of the binary
orbit, implying that the inner accretion flow
is seen more edge-on than the binary orbit.
Because the bodies of a stellar system typically
orbit and spin around the same axis (as do
most planets in the Solar System), we consider
potential explanations for the mismatch be-
tween the inner accretion disk inclination and
the orbital inclination.
Stellar-mass black holes are formed during

supernovae. The supernova that occurred in
Cyg X-1 might have left the black hole with a
misaligned spin. Gravitational effects could
align the inner accretion flow angularmomen-
tum vector with the black hole spin vector (25).
In this scenario, aligning the inner accretion

disk angular momentum vector with the black
hole spin vector would also align the radio jet
produced by the inner accretion disk with the
black hole spin vector. Several, but not all,
analyses of Cyg X-1 reflected emission spectra
give inclinations consistent with our i > 45°
constraint (26, 27).
An alternative explanation for the large in-

clination of the x-ray–emitting region invokes
the precession of the inner accretion flowwith
a period much longer than the orbital period
(28). From our analysis of a 2–4 keV long-term
x-ray light curve, we infer that the IXPE ob-
servations were performed close to the maxi-
mum inner disk inclination (fig. S2) (17). We
tested the hypothesis that the inner flow pre-
cesses with an amplitude of ≳17.°5 by performing
an additional 86-ks IXPE target of opportu-
nity observation of Cyg X-1 from 18 to 20 June
2022, 33 days after the May observations, which
corresponds to half of the current superorbital
period (17). If this hypothesis is correct, we
expect the polarization degree to drop from
4.01 ± 0.20% to ≪1% owing to the inclination
changing from i > 45° in May to i ≲ 10° in
June. The observations showed the source in the
same hard state with a 2–8 keV polarization

degree and angle of 3.84 ± 0.31% and −25.°7 ±
2.°3, respectively (fig. S4) (17). The polariza-
tion degree remained constant (within the sta-
tistical uncertainties) between the May and
June observations. We therefore disfavor the
hypothesis that precession of the inner accre-
tion flow leads to the high polarization degree
of the May observation. The combined May
and June polarization degree and angle are
3.95 ± 0.17% and −22.°2 ± 1.°2, respectively
(fig. S4) (17).
In previous work, others have argued that

optically thin synchrotron emission from the
base of the jet could contribute up to 5% to
the Cyg X-1 x-ray emission in the hard state
(29, 30). Synchrotron emission from electrons
gyrating around magnetic field lines is polar-
ized perpendicular to those field lines. Our ob-
servation of the x-rays being polarized parallel
to the jet axis would require synchrotron emis-
sion from a toroidal magnetic field, wound
around the jet axis. For this magnetic field
geometry, seen at an inclination of 27.°5, the
theoretical upper limit on the polarization
degree of the synchrotron emission is 8% (31).
The jet thus contributes <0.4% of the observed
polarization degree. If the almost-constant jet
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Fig. 2. Comparison of the x-ray polarization direction with the radio jet. The 2–8 keV electric
vector position angle is shown with the yellow line, and the 1s, 2s, and 3s confidence regions are
given by the orange-to-red shading. The background image is a radio observation of the jet (1).
We infer (see text) that most x-rays are emitted by a ~2000-km-diameter region surrounding
the ~60-km-diameter black hole, far smaller than the resolution of the radio image (which is indicated
by the red ellipse). The coordinate offsets in right ascension (RA) and declination (Dec) (J2000 equinox)
are in units of milliarcseconds (mas). The color scale shows the radio flux in milli-Jansky, with
1 Jansky being 10−26 W m−2 Hz−1.

Fig. 1. Energy-dependent x-ray polarization of
Cyg X-1. The polarization degree and polarization
angle, derived from the IXPE observations, are
shown for four energy bands (labeled and in
different colors). The ellipses denote the 68.3%
confidence regions.
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emission was the main source of the observed
polarization, wewould expect that a rise in the
x-ray flux from the inner accretion flow would
lead to an overall smaller polarization degree—
contrary to the observed trend (fig. S6).
The polarized x-rays from the immediate

surroundings of the black hole carry the im-
print of the geometry of the emitting gas. We
conclude that the x-ray bright plasma is ex-
tended perpendicular to the radio jet. The

high observed polarization degree either im-
plies a more edge-on viewing geometry than
given by the optical data, or it suggests that
unidentified physical effects are responsible
for production of the x-rays in accreting black
hole systems.
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x-ray polarization of Cygnus X-1
A black hole in a binary system can rip material off of its companion star, which heats up and forms an accretion disk.
The disc emits light in the optical and x-ray bands, forming an x-ray binary (XRB) system. Some XRBs also launch
a jet of fast-moving material that is visible at radio wavelengths. Krawczynski et al. observed the x-ray polarization
of Cygnus X-1, a black hole XRB with a radio jet. By comparing the measured polarization properties with several
competing XRB models, they eliminated some hypothesized geometries and determined that the x-ray–emitting region
extends parallel to the accretion disc. —KTS
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