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The observational signatures of black holes in x-ray binary systems depend on their masses, spins,
accretion rate, and the misalignment angle between the black hole spin and the orbital angular momentum.
We present optical polarimetric observations of the black hole x-ray binary MAXI J1820+070, from
which we constrain the position angle of the binary orbital. Combining this with previous determinations
of the relativistic jet orientation, which traces the black hole spin, and the inclination of the orbit, we
determine a lower limit of 40° on the spin-orbit misalignment angle. The misalignment must originate
from either the binary evolution or black hole formation stages. If other x-ray binaries have similarly large
misalignments, these would bias measurements of black hole masses and spins from x-ray observations.

B
lack holes can be characterizedwith just
two parameters: mass and spin. When
a black hole resides in a binary system,
accreting material from a companion
donor star through the accretion disk,

there are additional parameters that deter-
mine its observational signatures: the mass
accretion rate and the misalignment angle
between the black hole spin and the orbital
axis. Standard methods to measure black hole
spin from x-ray observations—iron line spec-
troscopy (1) or modeling of the accretion disk
spectrum (2)—assume that the misalignment
angle is small. Conversely, the standard inter-
pretation of low-frequency quasi-periodic os-
cillations in x-ray and optical observations of
black hole x-ray binaries as precession of the
accretion disk (3–5) requires the assumption
that the misalignment angle is non-negligible.
Substantial misalignment is theoretically pre-
dicted for x-ray binaries that received high ve-
locities during formation (6). Themisalignment
angle must be inherited from the formation
process, because it can only decrease when
the black hole is accreting (7). Gravitational
wave observations of merging black holes
have detected signatures of orbital preces-
sion (8), indicating nonzero misalignment in

these systems (9), though they might not be
representative of the wider population.
Measuring the misalignment angle in x-ray

binaries requires determining the three-
dimensional orientation of the black hole spin
and orbital axis. Accreting black holes often
show relativistic jets, which are launched along
an axis determined by the black hole spin di-
rection (10). The jet inclination angle can be
directly obtained in some cases from radio
observations (11), whereas the jet position
angle can be measured using either radio or
x-ray imaging. Combining these two angles
allows the black hole spin orientation to be
determined. Orbital parameters such as period
and orbital inclination can be determined
using spectroscopic measurements of radial
velocities of the donor star taken during qui-
escence, the stage at which accretion to the
black hole is reduced and optical emission is
not dominated by the accretion disk, through
orbital modulation of the optical photometry
and using constraints from the presence or
absence of x-ray and optical disk eclipses (12).
The black hole x-ray binaryMAXI J1820+070

was discovered as a transient x-ray source on
11 March 2018 (13). X-ray quasi-periodic os-
cillations detected shortly after this discovery
were observed for >100 days (14). Ejections of
material traveling at relativistic velocities have
been observed from this source in both radio
and x-rays, indicating that the jet inclination
(measured from the line of sight) is ijet ¼
63°T3° and the position angle (measured on
the plane of the sky from north to east) is
qjet ¼ 25:°1T1:°4 (15–17). Both angles were
determined to be stable over the observed
duration of the outburst. The orbital incli-
nation has been constrained to the range
66° < iorb < 81° by the lack of x-ray eclipses
and the detection of grazing optical eclipses
(12). Determination of the orientation of the
orbital axis requires one further parameter,
the orbital position angle qorb.

We monitored MAXI J1820+070 in the op-
tical B, V, and R photometric bands using
double image polarimeters (18, 19) during the
2018 outburst and quiescence. We obtained
the source intrinsic linear polarization by sub-
tracting the foreground interstellar polariza-
tion, measured from nearby field stars. During
the outburst, when the relativistic jets were
detected at radio frequencies, the intrinsic
linear polarization degree (PD) in the V and
R bands reached 0.5% at a polarization angle
[(PA), also measured from north to east)] of
23° to 24°, which coincides with the jet position
angle within the uncertainties (20, 21). After
the source faded in the x-rays, the PD increased
by a factor of 5 to 10 and the PA changed by
40°T4° to �17°T4° (Fig. 1 and table S1) (22).
This increase in PD is most prominent in the
B band, which also has the highest PD in the
range 1.5 to 5%, whereas the R-band polariza-
tion changes from 0.4 to 2%. The PA is most
precisely determined in the B band, which
also shows the least variability, with the mean
being PAh i ¼ �19:°7T1:°2.
We identify three properties of the quiescent-

state polarization: (i) It is strongest in the blue
part of the optical, with approximate depen-
dence on frequency n as PD(n)º n3 (Fig. 2 and
table S1); (ii) the PD remains high in the range
0.5 to 5% and the PA is stable; and (iii) the PA
undergoes apparently stochastic variations with
an amplitude of <10°with nodependence on the
orbital phase (23). These properties constrain
the mechanism of the polarized emission. We
modeled broadband photometric data obtained
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Fig. 1. Observed optical polarization properties of
MAXI J1820+070. (A) Intrinsic PD and (B) PA of
MAXI J1820+070 during quiescence are shown as a
function of orbital phase (using a published ephemeris)
(23). The intrinsic values were obtained from the
observed ones by subtracting the foreground interstellar
polarization, which is measured from nearby field stars.
Blue circles, green triangles, and red squares correspond
to the B, V, and R bands, respectively, with error bars
showing the 68% confidence levels. Polarization is
strongest in the B band and weakest in the R band,
although the angle does not change substantially.
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with the Liverpool Telescope and the Swift
Ultraviolet and Optical Telescope (UVOT) to-
gether with the polarized fluxes (Fig. 2). We de-
composed the total spectral energy distribution
into three components: a companion star (con-
tributing ~25% to the R-band flux) (24), an ac-
cretiondiskwith inner temperatureTd ≈ 6200 K
and inner radius Rd ≈ 6� 1010cm, and an ad-
ditional ultraviolet (UV) component with black-
body temperature Tbb ≈ 15;000 K and radius
Rbb ≈ 9� 109 cm (table S4). The properties of
the polarized flux are consistent with being
produced by the UV component with constant
PD of 5 to 8%.
The jet cannot be the source of the polar-

ized emission because its optically thin syn-
chrotron spectrum is red, which is inconsistent
with the observed blue spectrum of polarized
light. Moreover, the PA is offset by ~40° from
the jet position angle. The absence of de-
tectable orbital variations in the PA excludes
a hot spot origin. An optically thick accretion
disk is excluded by the high PD and blue
spectrum. A potential source of the polarized
emission is scattering of the accretion disk’s
radiation in the hot, optically thin, geometri-
cally thick accretion flow close to the disk’s
inner radius (22, 25), which may also be re-

sponsible for the observed UV excess. This
mechanism would produce polarization par-
allel to the meridional plane, i.e., the plane
formed by the orbital axis and the direction
toward the observer. Another possibility is dust
scattering, thought to be responsible for the
blue polarized spectra observed from accretion
disks around some supermassive black holes
(26). The presence of dust in quiescent-state
black hole x-ray binaries has been inferred
from the detection of themid-IR excess in two
systems (27). If dust is located within a flattened
envelope, in the wind around the accretion disk,
or in a circumbinary disk, the resulting polariza-
tion vector would also be parallel to the merid-
ional plane. However, if dust forms an extended,
approximately spherical structure at a high
elevation above the accretion disk, the polar-
ization would be perpendicular to the merid-
ional plane.We consider the latter scenario to
be implausible, as a nearly spherical envelope
cannot produce the high observed PD. A dust
scattering mechanism would not explain the
UV excess because the disk does not emit in
that range and hence there are no photons to
be scattered by the dust.
Independent of the spectral modeling and

geometry of the emission, the stability of the
PA (most evident in the B band, Fig. 1) over the
orbital phase suggests that the polarization is
related to the orbital axis, either parallel or
perpendicular to it. Hence, the observed PA
provides information about the position angle
of the orbital axis. The misalignment angle b
can be determined from

cos b ¼ cos ibhcos iorb þ
sin ibhsin iorbcos D ð1Þ

where ibh is the inclination of the black hole
spin vector (measured from the line of sight)
and D ¼ qbh � qorb is the difference between
the position angles of the black hole spin vec-
tor qbh and the orbital angular momentum
qorb (the geometry is illustrated in Fig. 3). If
the black hole spin vector is directed along
the southern approaching jet, then its inclina-
tion is ibh ¼ ijet ¼ 63°T3° and its position an-
gle is qbh ¼ 180°þ qjet ¼ 205:°1T1:°4 (15–17).
The smallest misalignment,b ≈ 42°, is achieved
when the orbital spin is also directed south
at qorb ¼ PAh i þ 180° ¼ 160:°3T1:°2 (because
the PA has an ambiguity of 180°) at the in-
clination iorb ≈ 73°. The probability distri-
bution for b in this case is shown in Fig. 4.
The radial velocity measurements (12) do
not differentiate between orbital inclinations
iorb and 180°� iorb so there is a second solu-
tion with iorb ≈ 107° and b ≈ 63°. If either the
orbital angular momentum or the black hole
spin is instead directed to the north, the black
hole rotation is then retrograde, resulting in
b ≈ 117° or 138° for the same two solutions for
the orbital inclination as above.

If the polarization vector is perpendicular
to the meridional plane, the orbital position
angle can take values qorb ¼ PAh i þ 90° or
PAh i þ 270°. This geometrical arrangement
leads to nearly identical values for b because
the difference between jet position angle
and PAh i is ~45°. All possible cases for the
orientations of the black hole and orbital
spins, the resulting values for b, and the azi-
muthal angle of the black hole spin in the
orbital plane are listed in table S5. Corre-
sponding probability distributions are shown
in figs. S4 and S5.
The difference of ≈45° between the jet posi-

tion angle and the PA indicates ≳40° mis-
alignment between the black hole spin and
the orbital angular momentum. This result is
independent of modeling or geometric ambi-
guities because it relies only on the observed
difference between the polarization angle and
jet position angle.
During outbursts, when material reaches

the black hole, this misalignment affects the
innermost regions of the accretion disk. For
a nonzero spin, particles moving around the
black hole—in orbits tilted with respect to the
black hole equatorial plane—undergo preces-
sion at a rate that decreases with radius (3).
Hence, a tilted disk is subject to twist and
warp. A high misalignment adds complica-
tions to the models of quasi-periodic oscil-
lations observed in black hole x-ray binaries,
which rely on precession of the inner parts of
the accretion flow, implying that the whole
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Fig. 2. Spectral energy distribution. The average
spectral energy distribution (SED) of MAXI
J1820+070 (red diamonds) as observed with the
Liverpool Telescope (LT) and Swift UVOT in July 2020
and corrected for reddening, with color excess
E B� Vð Þ ¼ 0:29. The photometric bands are
indicated at the top of the figure. The black dotted
lines give the lower and upper limits on the flux
for lower and higher extinction with E B� Vð Þ ¼
0:25 and 0:325, respectively. The polarized flux divided
by the best-fitting model polarization degree PUV =
0.055 (i.e., multiplied by a factor of ~18) is indicated
by blue triangles. Error bars show 68% confidence
levels. The solid black line gives the total model flux
consisting of the companion star modeled as a
blackbody (pink dot-dashed line), accretion disk (red
dotted line), and a hot blackbody (blue dashed line).
The spectrum of a K7 star (24) is shown for
comparison (solid green line).

Fig. 3. Geometry of the system from the
observer’s perspective. The gray plane is the
plane of the sky, labelled with north and east
axes, perpendicular to the line of sight toward the
observer ô. The angles between the line of sight
and the vectors of the orbital angular momentum Ŵ
and and the black hole spin ŝ are the inclinations
iorb and ibh. The corresponding position angles qorb
and qbh are the azimuthal angles projected onto
the sky, measured from north to east. The mis-
alignment angle b is defined as the angle between ŝ
and Ŵ. The red cone indicates the jet and the blue
ellipse indicates the companion star orbit around the
black hole, which is at the coordinate center.
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flow is misaligned by 2b from the orbital axis
in somephases (3). Forb ∼ 40°, the inner parts
of the accretion disk would need to become
almost perpendicular to its outer parts. Most
models assume smallermisalignment angles,
typicallyb ∼ 10° to 20° (3, 4, 5) although highly
inclined possibilities with b ∼ 45° to 65° have
sometimes been considered (28).
Highmisalignment has previously been sug-

gested on the basis of observations of the
gamma-ray light curves produced by the
jet in Cyg X-3 (29), and differences between
orbital and jet inclination angles are ~15° in
GRO J1655–40 (7) and ~50° in V4641 Sgr (30)
though the latter is highly uncertain.Misalign-
ment has also been theorized on the basis of the
inferred high kick velocities of x-ray binaries
acquired during formation (6). For the black
hole x-ray binary MAXI J1820+070, the high
misalignment was identified only after obtain-
ing the constraints on the position angle of the
orbital angularmomentumqorb. Without infor-
mation on the binary plane orientation, we

would have obtained only a lower limit on the
misalignment angle in MAXI J1820+070 of
≳5° because the orbital inclination is only mar-
ginally different from the jet inclination.
Our results demonstrate the need to treat

the misalignment angle as a free parameter
when measuring black hole masses and spins.
Assuming that the black hole spin and the
orbital angular momentum are aligned intro-
duces a systematic bias on measurements
(12, 15, 31). A large misalignment angle is ex-
pected to drive precession of the binary orbital
plane, altering the gravitational waves emitted
during a subsequentmerger event (9). Evidence
for orbital precession has been found from
population properties of black hole mergers
observed using gravitational waves (8).
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Fig. 4. Probability distribution function for the
misalignment angle. The distribution normalized
to the peak value is shown for the smallest
misalignment angle possible. This case corresponds
to the black hole spin directed along the southern
approaching jet and the orbital spin being directed
south at position angle qorb ¼ PAh i þ 180° and
inclination iorb ≈ 73°. The red hatched region
corresponds to the 68% confidence interval (i.e.,
between 16th and 84th percentiles of the posterior
probability distribution). Distributions of b for the
other seven possible combinations of qorb, iorb, and
ibh are shown in fig. S4.
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Misaligned spin in an x-ray binary
If a black hole is in a close enough binary system with a star, it rips material off the companion. As that material falls
into the black hole, it forms an accretion disk that is hot enough to emit optical and x-ray radiation. Poutanen et al.
used optical polarimetry to determine the orbital axis of a black hole x-ray binary (see the Perspective by Patat and
Mapelli). Combining these observations with previous measurements of the black hole spin showed that the two are
misaligned by at least 40 degrees. This high misalignment must have been generated during the formation of the black
hole, because accretion always brings the two axes closer together. —KTS
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